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The influence of a body of revolution or just its nose section on the heat flux 
is investigated under strong gas injection for a variable flow rate around the 
contour. 

A large number of papers [i-ii] is devoted to the study of the aerodynamic character- 
istics of bodies from whose surface gas is injected. Injection with a constant gas flow rate 
around the body contour is examined in [1-5]. The case of variable injection (depending on 
the solution of the problem) is also studied in [6]. Gas injection concentrated in the neigh- 
borhood of the critical point is described in [7-10]. Flow around rotating bodies has been 
investigated earlier on the basis of parabolized Navier--Stokes equations [Ii] and the bound- 
ary layer [12]. Viscous gas flow around an axisymmetric blunt body rotating as a single whole 
has been studied in [13] in a broad range of Reynolds numbers from moderately low to high for 
constant and variable injection along the contour. An asymptotic solution of the problem has 
been obtained in the neighborhood of the stagnation point, as has also a numerical solution of 
the problem of the flow around a rotating sphere and paraboloid. It is shown that rotation 
in the whole considered range of Reynolds numbers and injected gas flow rate will result in 
an increase in the heat flux to the body, whose dependence on the longitudinal coordinate is 
not monotonic! the maximum is not reached at the stagnation point but at a point on the side 
surface of the body. 

i. We consider stationary hypersonic laminar viscous compressible gas flow around a 
blunt axisymmetric body. We assume that either the whole body as a single whole, or its nose 
section, rotates. At high free-streamMach numbers M~, moderate and high Reynolds numbers, 
the gas flow around a rotating axisymmetric body is described by the equations of the hyper- 
sonic viscous shock layer which have the following form in dimensionless variables 
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These equations are written in an orthogonal curvilinear coordinate system (x, y, 8) coupled 
to the body surface. The relation between the dimensional and dimensionless variables is the 
following: the quantities x, K, rw, z are referred to the body bluntness radius R, y to eR; 
the velocity vector components u, v, w to U=, eU~, U=; the density ~ to e-*0=; the pressure 
P, temperature T, and enthalpy Hi/to 0eU~ a, To, cpTo. 

On the shockwave we give modified Rankine--Hugoniot relations in the thin layer approxi- 
mation 
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On the body surface we consider values of the longitudinal and azimuthal velocity components 

and the injected gas flow rate and temperature known." 

y----O: u--~O, 9v=G(x), T=T~-(x), 
{ Brw(x), O~x~xB, 

w-~- O, XB<X~XM. 
(3) 

For a numerical solution the system (1)-(3) is written in Dorodnitsyn type variables. 
Calculations were performed using an implicit finite-difference scheme [14]. Details are ex- 
pounded in [13]. In all the computations it was assumed that ~ = 0.5; ~ = 0.71; T w = 0.i; 

= 0.i. 

2. FLOW AROD~D A ROTATING BODY 

In connection with the application of gas injection to reduce the heat flux, there is 
the problem of determining the best method of organizing the injection. Thus, for instance, 
gas can be injected through an orifice in the nose or more uniformly over the contour, through 
the porous surface. To model different gas injection methods, the heat and mass transfer on 
the surface of a rotating sphere was investigated for X B = X M. We give the flow rate of the 

gas being injected in the form 

G = Go exp [ - -  (t/to)2]. (4) 

The parameter t depends on the longitudinal coordinate x or the distance measured along the 
Oz axis. Let us set t ~ x and to m xo. Since the magnitude of the total injected gas flow 
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i s  a lways  l i m i t e d  i n  p r a c t i c e ,  t h e  o p t i m a l  i n j e c t i o n  d i s t r i b u t i o n  law (4) t h a t  a s s u r e s  a r e -  
d u c t i o n  i n  t h e  maximum v a l u e  o f  t he  h e a t  f l u x  t o  t h e  body i s  s o u g h t  e x p e d i e n t l y  f o r  a f i x e d  
v a l u e  o f  G E. Dur ing  t he  c a l c u l a t i o n s ,  a f t e r  xo has  b e e n  g i v e n ,  t h e  c o n d i t i o n  G x = c o n s t  i s  
a s s u r e d  by s e l e c t i n g  t he  q u a n t i t y  Go d e f i n e d  by t h e  f o r m u l a  
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Let us examine the results of computing the flow around a rotating sphere for different 
values of xo. As is seen from Fig. i, as xo diminishes the injection at the stagnation point 
becomes all the more significant, and for Xo = 0.2, B = 0 an entire circle 0 ~ x ! 0.15 appears 
in which the thermal flux is practically zero. As xo increases, the thermal flux at the stag- 
nation point grows and later diminishes somewhat around the contour. For xo = 1.2 and xo = 
0.2 the maximal value of the heat flux is greater than for x = 0.4. Therefore, the dependence 
of the maximal value of the thermal flux qmax on the quantity xo is not monotonic. 

A number of additional computations in the range of values [0.2, 1.2] for xo was per- 
formed to obtain the function qmax(Xo). Analysis of the results obtained showed that for all 
the values of the rotation parameter B this dependence has a minimum (see Fig. 2). For the 
values 0 < B < i the quantity qmax reaches the minimum for 0.4 < xo < 0.6. This means that 
an optima~ in~ection distribution law (4) exists with a fixed t~tal ~low rate for Which the 
value of qmax is minimal. Gas injection according to the law (4) for xo ~ [0.4, 0.6] is more 
efficient than injection with a uniform flow rate distribution for the same value of G 2. Thus 
the growth of Xo to the value I, to which an almost uniform flow rate distribution of the in- 
jected gas over the sphere surface corresponds, will result in an increase in the maximal 
thermal flux by 15-50% as compared with the optimal value (the greatest value corresponds to 
B = 0 and the least to B = I). Body rotation results in the growth of qmax and an increase 
in the optimal value of Xo. 
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Fig. i. Distribution of the dimensionless thermal flux q on 
a sphere for G e = 0.063; Re = 500; B = 0 (solid curves) and 
i (dashes); i) xo = 1.2; 2) 0.4; 3) 0.2. 

Fig. 2. The dependence of values of the maximal thermal flux 
qmax on a sphere on xo for G Z = 0.063; Re = 500 and different 
values of Bz i) B = 01 2) 0.6! 3) 1.0. 

The optimal injection distribution according to the law (4) was also investigated for 
Re = 5.103 . The greatest reduction in the thermal flux maximum is here assured, as for Re = 
500 also, by the value of Xo ~ [0.4, 0.6]. The selection of Xo outside the interval mentioned 
results in an increase in qmax, where in the case of the flow around a nonrotating sphere the 
value of qmax grows more abruptly in the domain xo > 0.6 than in the domain Xo < 0.4. 

3. GAS INJECTION ON THE ROTATING NOSE SECTION 

In this case the boundary value for the aximuthal velocity component undergoes a dis- 
continuity at the point x B. It follows from an analysis of the Navier-Stokes equations that 
the terms with second derivatives with respect to x can be neglected in the whole flow domain 
outside a small neighborhood of the point of discontinuity. The magnitude of this neighbor- 
hood is of the order of the boundary layer thickness. 

Solutions of parabolic equations with discontinuous boundary conditions were studied 
earlier in a number of papers [4, i0, 15-18]. Thus, a solution is constructed in [15] by 
using the joining of two expansions, external (flow up to the discontinuity) and internal 
(flow after the discontinuity). The flow in the boundary layer was examined in the presence 
of a discontinuity in the body surface curvature [16], a discontinuous flow rate for the gas 
being injected [7, I0, 18], a jump change in the longitudinal body surface velocity [17], and 
a discontinuous value of the wall temperature [18]. In [7, 17, 18], computations were com- 
pared with experimental data and it was shown that the perturbation propagation domain up- 
stream from the point of discontinuity is not large, while a computation within the framework 
of equations of parabolic type (boundary layer equations) is in satisfactory agreement with 
experiment. The necessity to select a more shallow step in the longitudinal direction for a 
difference mesh outside the point of discontinuity of the boundary conditions is indicated 
in [16]. 

The possibility of applying a numerical algorithm was investigated before performing the 
serial computations, and the optimal difference mesh spacing in the neighborhood of the point 
of discontinuity was determined. To find the solution for x ~ XB a uniform difference mesh 
in the longitudinal coordinate was used with a discretization step of Ax = 0.0475, while for 
x > x B a nonuniform mesh was used whose nodes shrunk in the neighborhood of the point x B. 
The minimal value of the step AXmi n was selected equal to 4.10 -~. The mesh contained 41 nodes 
along the normal to the body surface. 

Let us consider the flow around a paraboloid with a rotating nose section where gas is 
injected from the nose section at a variable flow rate (4) around the contour for t ~ z, to 
zo = 0.14. The nose section of the body makes the free stream overspeed; consequently, the 
maximum of the azimuthal velocity vector component w is reached on the body surface. For x > 
x B we have w = 0 on the body surface; however, within the shock layer the gas particles have 
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Fig. 3. Dependence of the dimensionless thermal flux on the 
surface of a paraboloid with rotating nose section on x for 
Re = 5.103 (dashed curve, G = 0, B = 0): a) solid curves, Go = 

0.2, Zo = 0.14, XB = 1.0, B = 0.3 (I), 0.6 (2), 1.0 (3); dash-- 
dot, the quantity G/Go; b) solid curves, B = 0.6, zo = 0.14, 
x B = 1.0, Go = 0 (I), 0.i (2), 0.2 (3), 0.3 (4). 

TABLE io Values of the Dimensionless Total Thermal Flux Co- 
efficient Cq.102 on a Paraboloid with a Rotating Nose Section 
for Re = 5-I03 

�9 Go 

0,0 
0,2 
0,2 
0,1 
0,3 

t z=z B =0,4 

Cq. 10 ~ 

0,0 
0,3 
0,6 
0,6 
0,6 

2,48 
0,68 
1,12 
1,80 
0,80 

z=O, 84 

2,08 
0,90 
1,29 
1,77 
0,95 

z=l,51 

1,73 
0,96 
1,21 
1,53 
0,95 

2=2,40 

1,46 
0,93 
1,10 
1,33 
0,91 

a nonzero azimuthal velocity vector component because of the convective transfer of momentum 
in the longitudinal direction. Therefore, w achieves the maximum within the shock layer on 
the tail section of the body. The quantity Wmax decreases with removal downstream from the 
point x B. The friction coefficient ~2 undergoes a discontinuity at the point x = x B and it 
is negative for x > x B since the gas, overspedby the nose section of the body, interacts with 
the fixed tail section. The quantity is ~2 = 0 for x ~ 2.5. 

Now let us examine the influence of rotation of the nose section for different values 
of the rotation parameter and fixed gas injection on the heat flux to the body, and let us 
make a comparison with the case of a nonrotating and impenetrable body. The results of com- 
putations are presented in Fig. 3. For B = 1.0, Go = 0.2 the gas injection in the neighbor- 
hood of the body stagnation point results in a substantial reduction in the thermal flux only 
for x S 0.5. Furthermore, the flow rate of the gas being injected around the body contour 
decreases while the kinetic energy dissipation associated with the rotation grows. Heating 
of the gas in the shock layer occurs and the thermal flux to the body increases sharply. For 
x = x B the maximal value of the thermal flux is achieved on rotating nose section, being only 
a somewhat smaller value at the stagnation point for G = 0, B = O. For B = 1.0, Go = 0.2 
the thermal flux on a considerable portion of the rotating nose section surface exceeds the 
thermal flux to a nonrotating impenetrable body. As the rotation parameter diminishes to the 
value B = 0.6 (curve 2, Fig. 3a), the thermal flux on the rotating nose is less than in the 
case of no injection and rotation, with the exception of a small region near the point x B. 
For B = 0.3 injection with a flow rate Go = 0.2 results is a still greater reduction in the 
heat flux: in this case, on the nose section qmax is ~ 30% of the value for B = O, G = O. Ex- 
actly as for B = i, for B = 0.6 and 0.3 the maximum heat flux on the body with rotating nose 
section is reached in the neighborhood of the point x = x B. 

Rotation of the body nose section exerts influence on the flow around the nonrotating 
tail section. For instance, let us consider the value of the thermal flux at the point x = 
1.4, located on the nonrotating section of the body near the point of discontinuity in the 
boundary conditions. For B = 1.0, Go = 0.2, injection results in an insignificant diminution 
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in the heat flux (less than 10%). For B = 0.6 this diminution is 23%, and for B = 0.3 around 
30%. At the point x = 2.8 located considerably below the point of boundary condition dis- 
continuity, the difference between the values of the thermal flux for all the cases considered 
is not large and is 11%. 

The influence of injection and rotation on the total thermal flux coefficient to the body 
cq = Q/0.50=U~3SM is illustrated in the table for different values of z. For B = 1.0, Go = 
0.2 the total thermal flux for the mentioned values of z is practically the same as for B = 
0, G = 0. Therefore, for a fixed value of the injected gas flow rate Go = 0.2, the maximally 
achievable value of the rotation parameter that will assure a reduction in the local and total 
thermal flux to the body is B = 0.6. 

The problem of determining the injected gas flow rate that would assure the necessary re- 
duction in the maximal flux can be formulated analogously for a given minimal value of the 
rotation parameter B. As is seen from Fig. 3b, a diminution in the injected gas flow rate for 
B = 0.6 results in the growth of the local and total thermal flux (see the table also). It 
follows from the results presented above that in this case the minimal value of the injection 
parameter that would assure a reduction in the thermal flux to the body is 0.2. 

The relative influence of rotation on the thermal flux depends in a substantial manner 
on the streamlining conditions. Thus, for instance, for Re = 5-103 the thermal flux in the 
neighborhood of the stagnation point of an impenetrable rotating body for B = 0.3 exceeds 
the corresponding value for B = 0 by 1.7%. For gas injection from the body surface the mag- 
nitude of the thermal flux decreases and the influence of rotation becomes more noticeable: 
for G = 0.02 and 0.06 the increase in the thermal flux because of rotation is 4.4 and 37.5%; 
respectively. In regimes close to strong injection, the thermal flux to the surface of a ro- 
tating body is several times greater than to a nonrotating body: it grows 2.1-4.3 times for 
G = 0.08-0.1. 

NOTATION 

x, distance along the body generatrix; y, distance along the normal to the body surface; 
~, meridian anglel Oz, body axis of symmetry! z, distance along Oz measured from the nose; 
5, angle between the tangent to a body surface element and Oz; K, longitudinal surface curva- 
ture; rw, distance to the Oz axis; R, bluntness radius! U, u, v, w, velocity vector modulus 
and its components; H = T + u 2 + w 2, total enthalpy; Cp, Cv, specific heats for constant pres- 
sure and volume; y = Cp/Cv, adiabatic index; k. ~, heat conductivity and viscosity coefficients; 
~, angular velocity of the body! Re = p~U=R/Bo, o = ~Cp/%, M~, Reynolds, Prandtl, and Mach num- 
bers; To = U~2/2Cp, stagnation temperature; ~o = ~(To), viscosity at the temperature To; B = 
~R/U=, rotation parameter; G = 0wVw/0~U~, dimensionless injected gas flow rate; e = (y -- i)/ 
2y, K = e.Re, dimensionless parameters! SM, dimensional area of the middle sectionl q = 

0TI dimensionless thermal flux; ~2 = ~ 2~ o= I dimensionless friction 
~K Oy I= " c o s ~  K Oy Iw 

coefficient; Q, total thermal flux to the body side surface from the stagnation point to the 
section z = ZM. Subscripts: ~, at infinity; s, on the compression shock; w, on the body 
surface; B, at the point connecting the nose and tail sections of the body; M, at the section 
of the middle of the body; min and max, minimal and maximal value. 
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BREAKAWAY FLOW AROUND GRIDS OF NONCIRCULAR TUBES 

M. I. Nisht and A. G. Sudakov UDC 532.5.013.12:532.54 

On the basis of the discrete-vortex method, breakaway flow around a single-row 
assembly (grid) of tubes of square, rectangular, and triangular cross section 
is investigated. 

i. Loss of pressure (resistance) and heat transfer in the transverse flow around tube 
assemblies are determined primarily by the character of the fluid flow close to the tube sur- 
faces, which, in turn, depends on the geometric parameters of the assembly (the shape of the 
tube cross section, their distance apart, etc.) and on the conditions of flow around the as- 
sembly (Reynolds number Re). In the range of Reynolds numbers characteristic in practice, 
flow around the tubes is always of breakaway type and is accompanied by the formation of a 
developed accompanying wake behind the tubes [i]. 

The difficulty in solving the complete Navier--Stokes or Reynolds equations for describ- 
ing breakaway flow conditions at bodies with limitingly high Re, when the influence of mole- 
cular viscosity on the flow is slight, has led to the development of calculation methods based 
on the model of an ideal medium. An example of the realization of this approach is the cur- 
rently widespread discrete-vortex method [2]. The agreement between the calculation results 
obtained by this method and experimental data provides the basis for the assumption that this 
approach is justified in considering completely developed turbulent flow, when the flow- 
breakaway point at the surface of the body is known in advance. 

In the present work, results obtained by the discrete-vortex method are given for the 
resistance of a single-row assembly (grid) of tubes of square, rectangular, and triangular 
cross section. Grids consisting of plates are also considered. It is supposed that flow 
breakaway at these bodies occurs for tubes at points of discontinuity of the cross section 
and for plates at their sharp edges. Note that the calculation results for the flow obtained 
by the discrete-vortex method are the initial data for calculating the boundary layer at tube 
surfaces and the heat transfer between the tubes and the flow. 

2. The basic assumptions of the discrete-vortex method for calculating various break- 
away flows were outlined in [2]; they reduce to the following. The medium is ideal and in- 
compressible. Breakaway is modeled using vortex surfaces that are convergent in the flow. 
The character of the limiting flow in the general case is established by studying the whole 
process of flow formation over time. 
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